Machine Learning- HW1
HW1-15
- Very simple implementation of PLA algorithm. Really worth to try by anyone interesting to Machine Leaning.
- Though the input x has only 4 features in this problem, we need to add one more feature as bias during learning, meaning that the weight vector should be 5 dimensions too.
- hw1-16, hw1-17 : 調參數實驗
HW1-18
- 如果資料確定是線性可分,使用vanilla PLA,反之使用pocket PLA但會慢很多。
- pocket PLA:weight更新發法同vanilla PLA,但會有一個最佳的res_weight對整個training dataset的 error rate最低,所以每次更新完weight都要檢查現在的是否比之前保存的更好,這時候必須遍歷全部data統計錯誤率,也就是比較慢的原因。
- hw1-19, hw1-20 : 調參數實驗
Ref:
No comments:
Post a Comment